- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Pokhrel, Bishal (4)
-
Shen, Hao (4)
-
Mao, Hanbin (3)
-
Pokhrel, Pravin (3)
-
Zuo, Li (3)
-
Ji, Jiahao (2)
-
Adeyemi, Adeola (1)
-
Chen, Zhao-Xu (1)
-
Dhakal, Ananta (1)
-
Farhana, Fatiha (1)
-
Guo, Xianming (1)
-
Hossain, Mohammad Akter (1)
-
Hossain, Mohammad_Akter (1)
-
Ren, Kehao (1)
-
Shakya, Sajan (1)
-
Smith, Bryce (1)
-
Stratton, Rebecca L (1)
-
Stratton, Rebecca_L (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stratton, Rebecca L; Pokhrel, Bishal; Smith, Bryce; Adeyemi, Adeola; Dhakal, Ananta; Shen, Hao (, Molecules)Catalytic DNA has gained significant attention in recent decades as a highly efficient and tunable catalyst, thanks to its flexible structures, exceptional specificity, and ease of optimization. Despite being composed of just four monomers, DNA’s complex conformational intricacies enable a wide range of nuanced functions, including scaffolding, electrocatalysis, enantioselectivity, and mechano-electro spin coupling. DNA catalysts, ranging from traditional DNAzymes to innovative DNAzyme hybrids, highlight the remarkable potential of DNA in catalysis. Recent advancements in spectroscopic techniques have deepened our mechanistic understanding of catalytic DNA, paving the way for rational structural optimization. This review will summarize the latest studies on the performance and optimization of traditional DNAzymes and provide an in-depth analysis of DNAzyme hybrid catalysts and their unique and promising properties.more » « less
-
Zuo, Li; Ren, Kehao; Guo, Xianming; Pokhrel, Pravin; Pokhrel, Bishal; Hossain, Mohammad Akter; Chen, Zhao-Xu; Mao, Hanbin; Shen, Hao (, Journal of the American Chemical Society)
-
Ji, Jiahao; Zuo, Li; Pokhrel, Bishal; Pokhrel, Pravin; Shakya, Sajan; Shen, Hao; Mao, Hanbin (, Small)Abstract Specificity and activity are often at odds for natural enzymes. In this work, specificity and activity in coronazymes made of an Au nanoparticle (AuNP) and coated with DNA aptamer for glucose substrates are decoupled. By single‐molecule fluorescent MT‐HILO (magnetic tweezers coupled with highly inclined and laminated optical sheet) microscopy, it is found that this coronazyme has ≈30 times higher activity on thed‐glucose compared to bare AuNP nanozymes. Significantly, the new coronazyme demonstrates long‐range modulations by circularly polarized light (CPL) according to the matching chirality between the CPL and DNA corona, which follows the rule of chiral induced spin selectivity (CISS). Although the aptamer in the coronazyme is evolved againstd‐glucose, surprisingly, this coronazyme catalyzesl‐glucose better thand‐glucose, likely due to the faster rates for the aptamer to interact with thel‐ overd‐glucose. These results demonstrate, for the first time, an artificial enzyme with its catalytic activity controlled by short‐range intermolecular forces, whereas its chiral specificity is modulated by long‐range CPLs. This decoupled arrangement is pivotal to forge premier catalysts with activity and specificity superior to natural enzymes by separately optimizing these two properties.more » « less
An official website of the United States government
